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Probability distributions for polymer translocation
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We study the passage (translocation) of a self-avoiding polymer through a membrane pore in two dimen-
sions. In particular, we numerically measure the probability distribution Q(7) of the translocation time 7, and
the distribution P(s,) of the translocation coordinate s at various times . When scaled with the mean trans-
location time (7), Q(T) becomes independent of polymer length, and decays exponentially for large T. The
probability P(s,7) is well described by a Gaussian at short times, with a variance of s that grows subdiffusively
as 1 with a=0.8. For times exceeding (T), P(s,7) of the polymers that have not yet finished their translocation

has a nontrivial stable shape.
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I. INTRODUCTION

Translocation of a long polymer through a narrow pore in
a membrane has been extensively studied experimentally
during the last decade [1-3]. It is important in many biologi-
cal and chemical processes such as viral injection of DNA
into a host and RNA transport through a nanopore of the
nuclear membrane [4]. It may also have practical applica-
tions such as the possibility to “read” a DNA or RNA se-
quence by passing it through a nanopore such as microfabri-
cated channels or the a-hemolysin channel [5].
Understanding the dynamics of translocation is also of inher-
ent fundamental interest. Theoretically, the short time behav-
ior has been investigated [6] by considering ever more de-
tailed models of the interaction between the polymer and the
pore in the membrane. The microscopic details should not be
necessary to understand the scaling of the passage time for
very long polymers, where it should suffice to resort to rather
simple models of the polymer and the membrane.

It is convenient to track the process with a single variable
s, called the translocation coordinate, that is the monomer
number at the pore [7-10], and also indicates how much of
the polymer has passed to the other side. In terms of this
variable, the translocation process begins when the first
monomer enters the pore (s=1) and ends when the last
monomer exits to the other side at s=N, at the translocation
time T. If the translocation process is sufficiently slow (to
allow for the equilibration of the polymer), the mean force
acting on the monomer at the hole can be obtained from a
simple calculation of free energies. This is a reasonable ap-
proximation for the experimental results of relatively short
polymers [5]. The reduction of entropy creates a weak po-
tential barrier, and the translocation problem becomes
equivalent to the escape of a “particle” (the translocation
coordinate) over this barrier. As is the case for diffusion over
an interval of length N, the mean translocation time is found
to scale as (T)~N?. (The logarithmic potential due to en-
tropy is too weak to modify this scaling.)

In the absence of hydrodynamic interactions, the relax-
ation time 7 of a polymer scales with the number of mono-
mers as N'*2¥ [11,12], where the exponent v characterizes
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scaling of the radius of gyration R, of the polymer by R,
~N”. In good solvent v=3/4 in two dimensions (2D), and
v=10.59 in three dimensions (3D). Note that 7 is of the order
of the time the polymer needs to diffuse its own R,. Since 7
grows faster than N?, the quasiequilibrium approach to trans-
location, described in the previous paragraph, must fail for
sufficiently large N. The relaxation process slows down the
passage of the polymer, and the stochastic forces acting on
the translocation coordinate must be anticorrelated. Initial
numerical simulations suggest [13] that the resulting mean
translocation time (T) scales like the relaxation time 7, i.e.,
(T)~ N'?"_ This suggests that, to the extent that the resulting
process can be regarded as stationary, the translocation coor-
dinate s executes anomalous (subdiffusive) motion. Simple
scaling considerations lead to the conclusion [13], that the
variance of the translocation coordinate s> increases with
time 7 as 1* with a=2/(1+2v). This power is obtained by the
requirement that for 1=(T), s>~ N?, i.e., the translocation is
complete.

Anomalous diffusion in translocation is closely related to
the behavior of a tagged monomer in a long polymer [14]: At
short time scales, before a monomer feels the effects of its
neighbors, it undergoes rapid normal diffusion with diffusion
constant D,. At very long times, exceeding the relaxation
time 7, the entire polymer (and hence each monomer) dif-
fuses along with the center of mass of the polymer, with a
slow diffusion constant of D,/N. At intermediate times, the
fluctuations of the monomer are independent of the total
length, and to match the final N-dependent diffusion constant
must be characterized by anomalous diffusion [14]. Both the
tagged monomer and the translocation coordinate are slowed
down by the couplings to the rest of the polymer, and un-
dergo subdiffusion since the variances of the relevant vari-
ables increase sublinearly (a@<<1). There are of course im-
portant differences: the diffusion of a tagged monomer is
executed in d-dimensional real space, while the translocation
coordinate moves along the one-dimensional axis of mono-
mer numbers. The scaling exponents are also different, al-
though their values are derived from closely related consid-
erations. Recently we studied the constrained motion of a
tagged monomer as an indirect means of gaining insight into
the distribution of translocation times [15].
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There has been much recent progress in the theoretical
modeling of translocation: hydrodynamic interactions were
taken into account [16,17], and an intuitive scaling picture of
polymer translocation under the influence of a force [18,19]
was developed. A variety of scaling regimes with force ap-
plied to the end point or at the pore have been investigated
numerically in some detail [20]. Some recent studies [21,22]
suggest that the translocation process in 3D may be even
slower than dictated by the relaxation time. If so, this would
weaken the analogy between translocation and the motion of
a tagged monomer. (The accuracy of these claims is ques-
tioned in further work [23].)

Since the translocation process is terminated when s
reaches one end of the polymer, one may draw an analogy to
the anomalous diffuser in the presence of absorbing bound-
aries. One approach frequently used to describe subdiffusion
is the fractional diffusion equation (FDE) [24]. Solutions of
FDE in the presence of absorbing boundaries predict that for
large ¢ the absorption probability Q(f) decays as 1/t*+! [25].
In the case of subdiffusion (@< 1) this decay is so slow that
the mean absorption time diverges. By applying this analogy
to translocation it has been suggested [26] that the mean
translocation time is infinite, and there is a numerical study
[22] that lends support for a power-law tail in the distribution
of translocation times. If so, this would imply that the ex-
perimentally and numerically measured translocation times
are artifacts of the finite duration of the experiment. How-
ever, this proposition is not supported by experiments or
other numerical simulations.

To address this controversy, we recently considered [15]
the motion of a tagged monomer belonging to a very long
phantom (Gaussian) polymer, moving in one dimension be-
tween two absorbing boundaries. We demonstrated that at
least in this case, Q(¢) decays exponentially even though the
monomer undergoes subdiffusion. While this casts strong
doubts to the generality and relevance of the conclusions
based on FDE, it does not directly address the dynamics of
translocation, and thus does not necessarily contradict the
conclusions of Ref. [22]. Thus, in this work, we perform a
direct and detailed study of the translocation process for a
self-avoiding polymer in 2D. We concentrate on the behavior
of the distribution of the translocation times, and also on the
stationary distribution of the translocation coordinate at very
long times. In Sec. II we describe our numerical model and
the Monte Carlo (MC) procedure. The results presented in
Sec. III demonstrate that for large ¢ the distribution of the
translocation times decays exponentially, while the long-time
distribution of the translocation coordinate takes a nontrivial
form.

II. MODEL AND SIMULATIONS

Simulations of the self-avoiding polymer translocating
through a membrane were performed with a fluctuating bond
polymer model [27] in 2D. In this model, the N monomers
are restricted to the sites of a square lattice. Excluded volume
interactions are implemented by forbidding two monomers to
be closer than two lattice constants, while the polymeric
character is enforced by requiring the separation between
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monomers adjacent along the chain to be less than 10 lattice
constants. This choice of minimal and maximal distances
ensures that the polymer never intersects itself. The model
contains no energy scale, leading to an extremely simple
Monte Carlo procedure: An elementary move consists of an
attempt to move a randomly selected monomer by one lattice
spacing in an arbitrarily chosen direction. If the new configu-
ration is permitted, the step is executed; otherwise, the con-
figuration remains unchanged. One MC time unit is com-
posed of N elementary moves. This model closely resembles
tethered spheres used in continuum [28] simulations. We pre-
viously used this model to demonstrate the anomalous dy-
namics of polymer translocation [13]. The intervening mem-
brane in simulations has a thickness of two lattice constants,
with a hole that is three lattice spacings wide. The tight size
ensures that only one monomer can pass through the hole,
and enables a unique designation of the monomer s which
separates the polymer segments on the two sides of the
membrane.

The translocation process in actuality involves several
complicating factors: The polymer located on one side of the
membrane must first reach the pore such that one end enters
the pore. In the absence of a strong driving force, it is then
quite likely that the polymer retracts and does not pass
through to the other side until a number of such attempts.
Both of these processes have been discussed in the literature.
Since we are only interested in the anomalous dynamics dur-
ing the translocation process, we implement a computation
procedure that is different from the usual experimental con-
ditions. In our simulations, the initial configuration is con-
structed by fixing the monomer s=N/2 in the hole, and
equilibrating the remaining monomers for more than the re-
laxation time (which is proportional to N>7) [11]. After this
equilibration is finished, at time #=0, the fixed monomer is
allowed to move freely. The simulation ends at time t=7
when the entire polymer is on either side of the membrane.
We denote T the translocation time. The procedure is re-
peated a large number of times for each polymer size N, to
construct the probability Qn(T). For each simulation run, we
also record the trajectory s(¢) of the translocation coordinate.
Consequently, we are able to monitor the evolution of the
distribution P(s,7). At the starting moment P(s,0)=5; v/,
and it subsequently broadens as the time increases. It should
be noted that as r reaches typical translocation times, the
fraction of polymers that has completed the process starts to
grow, and consequently the probability distribution P(s,1),
which is normalized for each z, is obtained from a decreasing
sample of runs. Another drawback is that the simulation
times increase as N*°, making it difficult to obtain good sta-
tistics in the interesting limit of large N. We performed simu-
lations for N=8,16,...,128, and 256. Most of the results
presented in the paper correspond to N=128, for which we
are able to obtain sufficiently many samples.

III. RESULTS

Each of our simulations begins at s=N/2, and as the time
t increases the distribution P(s,f) becomes broader. As long
as t is significantly shorter than the mean translocation time
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FIG. 1. (Color online) Probability distribution of the transloca-
tion coordinate s, of a polymer with N=128 monomers for MC
times 7=10% 2X 10%,..., and 9 X 10* (from narrowest to the widest
distribution), which are significantly shorter than the mean translo-
cation time. The results are obtained from 10 000 independent runs.
Continuous lines represent Gaussian fits to these distributions.

(T), the distribution of s resembles a Gaussian, as can be
seen in Fig. 1, and is very different from the shapes obtained
from the solutions of FDE. The plots depict the behavior of s
for N=128, where (T)=2.9X 10° MC time units. Similar
shapes were observed in the simulations of a tagged mono-
mer in a phantom polymer (see Fig. 1 in Ref. [15]), where
one can prove that the distributions are indeed Gaussian. In
our case, there is no analytical proof, and we instead numeri-
cally examined the fourth cumulant «, of the distribution,
which vanishes for a Gaussian probability density function
(PDF). Since the variable s is discrete, x, does not vanish,
but should become significantly smaller than the squared
second cumulant (which is the variance of the distribution
8s?), as the width of the distribution increases. We find that
once this width exceeds 2, the cumulant «, becomes only a
few percent of (Js?)%, and the deviation from zero is prob-
ably caused by the statistical errors. Thus within our statisti-
cal accuracy, the PDF at short times is indistinguishable from
a Gaussian. The observed Gaussian behavior does not
strongly constrain the choice of the effective theories de-
scribing the diffusion of s, since such distribution can be
produced by a variety of equations.

As time goes on, the variance ds® is expected to increase
as 1%, with a=2/(1+2v)=0.8, and eventually saturate at val-
ues of order N2. Figure 2 depicts such dependence on a loga-
rithmic scale. For a range of times longer than 10* this line
has a straight segment with slope 0.86, which is slightly
larger than the above value, and is consistent with the other
numbers quoted in the literature [13,20]. The statistical ac-
curacy of the calculated exponent is better than the last sig-
nificant digit of the number. However, we believe that sys-
tematic errors related to crossovers and specific choice of the
fitting range introduce significantly larger (few percent) er-
rors. Curves for various values of N saturate approximately
at 8s>~(N/5)?, and corresponding saturation time 7 is ob-
tained by extrapolating the (low-f) power-law behavior to
this value. For the various lengths N used in our simulations
the ratio (T)/ T, is approximately constant (=4).

As the simulation time 7 exceeds (T), a significant fraction
of polymers complete their translocation process. For the
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FIG. 2. (Color online) The mean squared displacement of the
translocation coordinate s as a function of MC time ¢, obtained from
10* runs of a 128-monomer polymer. The straight line represents
the power-law fit 7% in the interval 10* <7< 1.2 X 10° with exponent
a=0.86.

subsets of runs that survive into such long times, the distri-
bution of P(s,7) reaches a stable shape. In the case of normal
diffusion between two absorbing boundaries, the limiting
shape is a sine function that vanishes linearly near the
boundaries. This shape reflects the lowest eigenfunction of
the diffusion operator (Laplacian), corresponding to the long-
est decay time (eigenvalue). Since we do not know of a
corresponding differential equation for the translocation co-
ordinate, we do not know the corresponding limiting shape.
Some insight into possible solutions can be gleaned by con-
sidering a fractional diffusion operator, as in the case of the
Laplacian raised to the power 1/, with absorbing boundary
conditions (see, e.g., Zoia et al. [29]). In the absence of ab-
sorbing boundaries the squared width of the distribution pro-
duced by such a fractional Laplacian increases as ¢“. In the
presence of the boundaries, the eigenstates are not known for
general . However, it is known that near the absorbing
boundaries the eigenfunction goes to zero nonlinearly, with
an exponent of k=1/a. For normal diffusion, this naturally
reduces to the expected linear form. For subdiffusion, the
eigenvalues of this operator vanish faster than linearly; in the
case a=0.8 with exponent k=1.25. Figure 3 depicts P(s,?)
for N=128 and for times exceeding (7). The statistical accu-
racy of these results is not very good, since a significant
fraction of the polymers have already translocated. The ac-
curacy is particularly poor near the end points of the graph
where the probability approaches zero. Nevertheless, we ob-
serve that the function seems to decay faster than linearly
and slower than quadratically. The overall shape of the dis-
tribution can be approximated by the function A sin[s7/(N
+1)]. We find a good fit with k=1.44. Qualitatively, Fig. 3
resembles the results obtained for tagged monomer diffusion
(see Fig. 8 in Ref. [15]), but with a different exponent k.
We also studied the probability distribution Q(7) of the
translocation time. In the range from N=8 to N=256 we find
that the mean translocation time (7) increases as N>°' con-
sistent with 1+2»=2.5, and in accord with previous work
[13,20]. As in the case of the numerical estimate of a, the
statistical errors are smaller than the last significant digit, but
we should beware of systematic errors. For example, the ex-
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FIG. 3. (Color online) Probability distribution of the transloca-
tion variable s of the subset of polymers with N=128 monomers
that did not complete translocation at MC times t=40X 10°, 42
X 10°,..., and 48 X 10° (thin lines), which exceed the mean trans-
location time. These graphs were obtained by performing 10* inde-
pendent runs out of which only 15-20 % survive to the times when
the data is collected. The thick solid line is the average of ten
graphs in the range 4 X 106<r<4.9 X 10°. The dotted line depicts
the fit function A sin‘[s7/(N+1)] with k=1.44.

ponent 2.51 should correspond to a= 0.80, which is smaller
than the directly measured value of 0.86, and indicates the
importance of systematic errors. Figure 4 depicts Q(T) for
three values of N on a semilogarithmic scale. We clearly see
an exponential decay Q(T) ~exp(-=T/T,) for large T in each
of the graphs. The decay constant 7|, increases with increas-
ing N. The ratio (T)/T, is approximately a constant (=1.8).
Moreover, in terms of rescaled times 7" =T/{T) the distribu-
tion becomes independent of N, as can be seen in the inset in
Fig. 4. The exponential decay is evident over two decades on
the vertical axis. (Note that analogous tail of the distribution
in Fig. 2(b) of Ref. [22] ranges over 2/3 of a decade and has
a large scatter.)

IV. DISCUSSION AND CONCLUSION

In this work we performed a detailed study of distribution
functions associated with the translocation of a 2D model of
a self-avoiding polymer. Our results clearly indicated an ex-
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FIG. 4. (Color online) Probability distribution of translocation
time T for N=32, 64, and 128 (left to right), obtained from 100 000,
78 600, and 8600 runs, respectively. The inset demonstrates the
collapse of the probabilities when T is scaled with its average value

(I).

ponential decay of the PDF Q(7) for large translocation
times 7T, and thus exclude power-law [22] or stretched expo-
nential [30] behavior. The distribution of the translocation
variable s both at short and long times exhibits the behavior
resembling that of a tagged monomer [15]. There is some
similarity in the behavior of the long-time stationary distri-
butions from our simulations, and solutions of a fractional
Laplacian with absorbing boundaries [29]. However, the ac-
curacy of our results precludes definitive statements regard-
ing these long-time distributions.

Strong crossover effects are present in translocation for
surprisingly high values of N. In fact, the values of various
exponents reported in the literature differ beyond their nomi-
nal error bars. One may hope that for N as large as 1000 this
difficulty can be overcome. Unfortunately, accumulating
very large statistics for such large N is currently beyond our
ability.
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